Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries.

نویسندگان

  • Yujie Zhu
  • Yang Wen
  • Xiulin Fan
  • Tao Gao
  • Fudong Han
  • Chao Luo
  • Sz-Chian Liou
  • Chunsheng Wang
چکیده

Sodium ion batteries (SIBs) have been considered as a top alternative to lithium ion batteries due to the earth abundance and low cost of sodium compared with lithium. Among all proposed anode materials for SIBs, red phosphorus (P) is a very promising candidate because it has the highest theoretical capacity (∼2600 mAh/g). In this study, a red P-single-walled carbon nanotube (denoted as red P-SWCNT) composite, in which red P is uniformly distributed between tangled SWCNTs bundles, is fabricated by a modified vaporization-condensation method. Benefiting from the nondestructive preparation process, the highly conductive and mechanically strong SWCNT network is preserved, which enhances the conductivity of the composite and stabilizes the solid electrolyte interphase. As a result, the red P-SWCNT composite presents a high overall sodium storage capacity (∼700 mAh/gcomposite at 50 mA/gcomposite), fast rate capability (∼300 mAh/gcomposite at 2000 mA/gcomposite), and stable long-term cycling performance with 80% capacity retention after 2000 sodiation-desodiation cycles. The red P-SWCNT composite fabricated by the vaporization-condensation method significantly extends the cycling stability of P/carbon composite from current ∼100 cycles to ∼2000 cycles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage.

Recently, sodium ion batteries (SIBs) have been given intense attention because they are the most promising alternative to lithium ion batteries for application in renewable power stations and smart grid, owing to their low cost, their abundant natural resources, and the similar chemistry of sodium and lithium. Elemental phosphorus (P) is the most promising anode materials for SIBs with the hig...

متن کامل

Nitrogen-Doped Carbon for Red Phosphorous Based Anode Materials for Lithium Ion Batteries

Serving as conductive matrix and stress buffer, the carbon matrix plays a pivotal role in enabling red phosphorus to be a promising anode material for high capacity lithium ion batteries and sodium ion batteries. In this paper, nitrogen-doping is proved to effective enhance the interface interaction between carbon and red phosphorus. In detail, the adsorption energy between phosphorus atoms and...

متن کامل

Single-walled carbon nanohorns coated with Fe2O3 as a superior anode material for lithium ion batteries.

A novel composite of Fe(2)O(3) and single-walled carbon nanohorns (SWCNHs) was firstly developed via a simple hydrothermal method. As an anode material for lithium ion batteries, a Fe(2)O(3)/SWCNHs composite shows excellent rate performance and cycle stability, even at a high current density of 1000 mA g(-1).

متن کامل

Facile Synthesis of SiO2@C Nanoparticles Anchored on MWNT as High-Performance Anode Materials for Li-ion Batteries

Carbon-coated silica nanoparticles anchored on multi-walled carbon nanotubes (SiO2@C/MWNT composite) were synthesized via a simple and facile sol-gel method followed by heat treatment. Scanning and transmission electron microscopy (SEM and TEM) studies confirmed densely anchoring the carbon-coated SiO2 nanoparticles onto a flexible MWNT conductive network, which facilitated fast electron and li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 9 3  شماره 

صفحات  -

تاریخ انتشار 2015